Spring 2017 MATHS5012

Real Analysis II

Solution to Exercise 2

Here p is a Radon measure on R™. Many problems are taken from [R1].
(1) Use maximal function to give another proof of Lebesgue differentiation theorem.

Setting

1
1)) = s /B M p@

and

(T'f)(x) = limsup(T, f)(x) .

r—0
Show that T,.f = 0 p-a.e.. Suggestion: For € > 0, pick continuous g such that
|f — gllzr < € and establish T'f(x) < Mh(x) + |h|(x) where h = f — g. Then use
7(a) in Ex 1.

Solution. Explained in class, or look up [R1].

(2) Let E be p-measurable. Show that u-a.e. x € R™\ E has density 0 in E.
Solution. Apply to the complement of the set and use the result on density 1.

(3) Let F be closed in R™ and d(z, F') the distance from z to F,
d(z,F)=inf{|lz —y| :y € F}.
(a) Show that
|d(z, F) = d(y, )| < [z —y[, Yo,y eR".
(b) Let « be a point of density 1 of F' C R. Show that

|d(y, F') — d(x, F)|
ly — x|

—0asy— .



Solution. Note that I have modified this problem. First of all, as F' is closed, for

cach x € R", there exists some z € F such that d(z, F) = |x — z|. Then

diy, F)<|ly—z| <l|ly—z|+|v—z| =y — 2| +d(z, F) ,

and so d(y, F) — d(z, F) < |x — y|. The full inequality follows from switching = and
Y.
Note. It is impressive that the distance function is always Lipschitz continuous with
Lipschitz constant 1.

Next, take n = 1. Let x be a point of density 1 for F, so d(z, F') = 0 and it has
zero density with respect to the complement of F, F’. For small € > 0, there exists

some &g such that

LYF' N[z — 0,2+ 4]
26

<e, YO<d<y.

We claim that for each y = x4+, < 09, F N[y —de,y+ed] # ¢. For, if it is empty,

that means [y — €d,y + £4] is contained in F” so

LYF' N[z — 8,2+ 4] S L'y —edy+ed]
26 = 26 —

contradiction holds. It follows that
Ay, F) = d(x +6) < &0,

that is,
|d(x + 6, F) — d(z, F)|

<e,

and the conclusion follows. The same argument applies to the point x — 9.

(4) For § > 0, let I(§) = (—6,0). Given o and 3, 0 < a < § < 1, construct a
measurable set F so that the upper and lower limits of £'(E N 1(§))/26 are equal



to a and [ respectively as o — 0.
Solution. By reflecting about the origin if necessary, it suffices to consider the

following function f(6) = LY(EN]0,6))/d, where E C [0,00). For 0 < a < 3 < 1,
1—
let r = %(%) € (0,1) and < %,’yn =r"and [, = v, — g%ﬂ' Observe that I,

satisfies the following inequalities

5}
Yn = Ynt+1 > ln = Tn — E’Yn.u > 0.

Let E be U [V — lny V). We first show that f(v,) =3, Vn,
n=1
CEA0W) =S = Su-2 3 4
k=n k=n a k=n+1
o — o0
k=n-+1

Hence f(7,) = . Next we will show that f(v, — [,,) = «, by definition of [,
‘Cl(E N [0,’}% - ln)) = 6/7714-1 = Q%n — aln

we have f(v, —[,) = a. We try to show that f attains maximum and minimum
at 7, and v, — [, respectively. V6 € [Yni1,7m — L), LY(EN]0,0)) is fixed, so f is
decreasing on [y, 3n — lnl. 166 € P — by, 70,

BYn —Yn+0

Jo) =Pt =1 (- By

we have f is increasing on [y, — I, 7,] and we have the following inequalities

a< f(0)<pB

with first equality holds when 6 = ~,, — [,, and second equality holds when 6 = ,.



Result follows.
For the other cases (either & = 0 or § = 1), we may consider 2 strictly monotonic

sequences, oy | « and [, T 8 such that «,, < B,,Vn,m. And let

1 —
rE = il ( B ) and i1 = rpyE with v = 1.
28k \1 — agqr

We immediately have v, — 0 as & — oo and

a1 —=05

Vi1 < min{ Bor’ T—ones e

With the above inequality, we may define ly, 1 := aop_172n-1 — BonYon and lo,

BanYon — Qant17Y2n+1 Which satisfy

Y — Yni1 > b > 0,Vn,

Z Ik = aop—172n—1 and Z Ik = BanVon-

k=2n—1 k=2n
We may consider
Uh/n_lmﬁ)/n] ifa=0
E = no:ol

U (Yos1, Vi1 + 1] B =1

n=1

then we have f(v9,-1) = qon—1 and f(y2n) = Bon. Result follows from similar argu-

ments as before.

(5)If A C R' and B C R, define A+B ={a+b:a€ A, be B}. Suppose m(a) > 0,

m(b) > 0. Prove that A+ B contains a segment, by completing the outline given in

[R1].
Solution. Follow the hint in [R1].

(6) A point € R" is called an atom for a measure A if A\({z}) > 0. Establish the



decomposition

M:f£n+ucs+zak5wka ag > 0,
k

where f € L'(L£") and p.s has no atoms.

Solution. By Radon-Nikodym we have the decomposition p = fL" + pus where
ps L L™ Let Ay = {x: ps({z}) >0, |z| <k} and A =, Ar. We claim that each
Ay is a finite set. For let us pick N many points from A;. We have

00 > ps(Br(0)) > N x

Y

| =

which shows that N has an finite upper bound. Here we have used the fact that p
is Radon so that it is finite on balls. Now we know that A is a countable set {z;}.

Setting

Ma = Zaj(sx]’ y a5 = :us({mj}) )
J

the conclusion follows by letting s = s — fiq -

(7) Let {x,} be an infinite sequence of distinct numbers in [0, 1]. Can you find an
increasing function in [0, 1] whose discontinuity set is precisely {x,}?

Solution. Put = > 27"§,, where R = {z,}>°,. Define

F(r) = u(—o0,2) = Y o

rp<T

be a function on R. Now fix an x ¢ R. Let € > 0 be given. There exists N such
that

iQ‘” < e.
N

Then since x ¢ R, we can choose § > 0 such that zq,--- ,xy_1 & [t — 6,2+ ). Now

whenever r < y < x + 4,

F(y) = F(z) = plz,y) < plr - 6,2+ 90) <e.
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Similarly, we also have

F(z)—F(y) <e

whenever x — § < y < x. Hence F' is continuous outside R.

But for every x € R, whenever y > x,
F(y) — F(z) = plz,y) > 27"

for some k. This shows that F' is not continuous at every point in R.

(8) (a) Consider the real line. Show that x is not an atom for p if and only if its
distribution function is continuous at x. Use (a) to construct a singular measure,
that is, perpendicular to £!, without atoms. Suggestion: Consider the Cantor-
Lebesgue function.

Solution. Refer to [R1]. This is an important example.

(9) Let p be a singular measure with respect to £! and f its distribution function.
Show that for p-a.e. z, either fi or f’ becomes oo.
Solution. Let A* be the support of u. We know that £'(A*) = 0 and u(E) =
w(ENA*). Let
Cp=A{z: Dp(x) <k}, C=[]JC.
k

(We have dropped the subscript £! in D.) We claim that p(C) = 0 for every k.
Indeed, applying Lemma 6.5 to the set Cy N A*, we obtain

u(Cy) = p(Cy N A*) < KLY CL N AY) < kLY (A) =0

It follows that p(C') = 0. Therefore, for p-a.e. z, Du(x) = co. Using definition,

plr — 0, + 0
20,

— 0OQ,



for some 9,, — 0. In other words,

f(x+0,) = flz = d,) + p({z + dn})
20y,

— 0

Since p is singular, even if pu({z + d,}) > 0, we can find a point y arbitrarily close

to & + 0, such that u({y}) = 0. In view of this, we may assume u({z +d,}) = 0, so

flx+0,) — flz —0,)
20,

—00, asn—oo.

On the other hand, if f (z) and f’ (z) are bounded, we have

flx+96) = flz) + fi(x)d +0(0) , flz—10)=f(x)— f (x)0+0(0),

which implies

flx+6,) — flz —0d,) = (f—,i-(x) + f(2))0n + 0(6n),

SO
flx+6,) — f(z —6n)
20,

<A@+ @)+ 1,

for all large n, contradiction holds. We conclude either f! (z) or f_(z) must blow

up.
Note. See [R1] theorem 7.15 for a related result.

(10) Construct a continuous monotonic function F' or R! so that F is not constant
on any segment although F’(x) = 0 a.e.
Solution. Let

k: n
An:{Q—n: k=0,1,---,2 }C[O,l], n>0, A:LnJAn.

Here A is the set of all rational binary numbers. In the following we define a sequence



of continuous, piecewise functions Fj, by assigning their values at A,,. First, define
Fo(z) = x so that Fy(0) = 0 and Fy(1) = 1. Assuming F,,_;(z) has been defined for
x € A,_1, F,(x) is defined as follows, if z = 2k /2", then F,(x) = F,,_;(k/2""!) and,
if v = (2k +1)/2", then

2k +1) 1 k 3 k+1
5 (F5) =i () <5 (5)

At this point you better sketch the graphs of the first several F},. Keep in mind that

whenever k/2" appears in some previous A,,, say, k/2" = j/2" m <n, F,(k/2") =
F..(7/2™) . You can see that each F, is strictly increasing, F,(z) < F,11(z) for all
x € (0,1), so that

F(z) = lim F,(x) =sup F,(x)

n—oo
is well-defined on [0, 1]. Clearly 0 < F(z) < 1 and F(z) = F,(z) for x = k/2".
Claim 1: F is strictly increasing. For, let x < y, we can find a large n and some k

so that

- k <k+1<
€T J— [
on on Y,

k k E+1 E+1
Fla) <F|—=)=F,| = F, =F < F(y) .
=r(z) =5 (3) < (o) =r (%) =rw
Claim 2: F'is continuous. Consider 2k/2" < (2k +1)/2" < (2k 4 2)/2". We have
2k+1 2k 1 k 3 kE+1 2k
F(55) () - G) r (65) - (5)
_ 3 7 k41 g k |
4 gn—1 gn—1

SO

and

F(2k+2) _F(2k+1) _
on on

B!

(7) - (7 () 37 (5)
(r(5) - ()

1 =



Therefore, for any two consecutive binary rational numbers in the same A,,,

(%) (@)= () i

Now, if F' is discontinuous, as an increasing function, it must be a jump discontinuity.

At such z, F(z%) — F(z~) > po > 0 for some p. However, for each n we can find

some k = 0,---,2" such that k/2" <z < (k+1)/2" or k/2" <z < (k+1)/2". In

Pa") ~ F(z") = lim (F (k;;1> —F(zﬁn)) -0,

contradiction holds. Hence F' must be continuous.

view of (1),

According to general theory, F' is differentiable almost everywhere. Let I be the
collection of all binary irrational numbers, that is, € [ if its binary expansion
contains infinitely many 0 and 1. It is a set of full measure. Therefore, the set of all
binary irrational numbers at which F' is differentiable is also a set of full measure.
Let us denote it by J.

Claim 3: F'(x) = 0 for x € J. First, we observe that for x € J, there exist binary

rational numbers «,, 5,, where (5, = a,, + 1/2" satisfying
an < < By,
for all n. Moreover,

Z1 Zn
=g et o z; € {0,1},
and one must have either (a) a,, = a1, By = Pn1 + 1/2", or (b) o, = 1 +

1/2", B, = Bu_1 - A review on the construction of the approximation to x by plotting

the first several steps will convince you these facts.



In the case (a), we have

F(fn) — F(am)

and, in the case (b),

F(Bn) — F(om)

(F(anl) 4 2F<5m)) — Flan 1)
(F(ﬂn—l) _F(an—l)) )

N R N

F(Bn-1) — GF(an_l) + ZF(B"—1)>

(F(Bn-1) — Flay-1)) -

A~ =

As F is differentiable and increasing, F'(z) € [0,00). If F'(x) > 0, the sequence

F(a,) —

F(Bn)

Ap =

ﬁn_an

— F'(z), asn—oo.

It follows that a,/a,—1 — 1 as n — oo. However, the relations above tell us that

ap/an—1 = 1/2 or 3/2, which never converges to 1. Hence F”(x) must vanish.

Note. This example is a special case of an example in 18.6 in [HS].
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